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The particle size, shape and the  geometry  of packing may  affect the  diffracted intensi ty  in a powder. 
Previous considerations of the  statistical aspects of the problem have yielded somewhat  conflicting 
results. The present  t r ea tmen t  contributes toward resolving these results by  providing a simplified 
but  still exact formulat ion of the expression for the  intensity.  I t  is shown tha t  in addi t ion to the 
usual expression for the in tensi ty  associated with an infinite homogeneous solid there is a corrective 
term. This t e rm depends in detail on the  correlations between a ray 's  absorbing pa th  in and out  of 
the powder. The correction te rm vanishes when there are no correlations between these paths.  
As an example of the effect of correlations, we have obtained the  correction te rm for a simple model  
of a powder which should be a good approximat ion in the l imit  of smalI porosity. The correction 
is found to go to zero in the l imit  of normal  incidence in accord wi th  the rigorous results. 

I n t r o d u c t i o n  

Recent efforts to measure the absolute diffracted 
intensity from powders to obtain accurate values of 
the form factors (Batterman, Chipman & DeM:arco, 
1961) required reliable estimates of effects of 
granularity. Although the granularity corrections 
involved are small, the observed differences between 
theoretical and experimental form factors are also 
small. I t  is therefore important to obtain a rigorous 
upper limit for such corrections as well as a better 
understanding of the effects of granularity, if further 
accurate absolute measurements are to be made. 

Various attempts have been made to solve for the 
effects of particle size, shape and the geometry of 
packing on the diffracted intensity in a powder. 
These attempts have yielded differing results for the 
reflected intensity. Brindley (1945) found an ex- 
pression for the correction factor which in the absence 
of extinction effects would reduce to zero in the case 
of a one-component powder. De Wolff (1947) later 
gave an elaborate statistical formulation of the 
problem and pointed out that  Brindley's method of 
averaging was subject to some criticism. De Wolff 
emphasized that  the distribution of absorbing paths 
between the surface and the point of reflection must 
be described by a probability distribution which is 
conditional upon there being a particle at the point 
of reflection. De Wolff's formulation was mainly 
directed at the transmission problem previously con- 
sidered by Sch/~fer (1933) for a simpler geometry and 
where one-dimensional considerations are sufficient. 
His treatment of the reflection problem was less 
rigorous. Wilchinsky (1951) gave a treatment of the 
reflection problem based on a simple geometric model 
of a powder, without attempting a rigorous statistical 
treatment. 

* Presen t  address:  Meta l lurgy Division, 
Na t iona l  Labo ra to ry ,  Upton ,  N.Y.,  U.S.A. 
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Brookhaven  

In the present paper, we consider the problem of 
reflection from an infinitely thick porous sample. 
We neglect all extinction effects. We assume diffrac- 
tion from a sample with plane surface, with angles of 
incidence and reflection equal, and assume the beam 
wide enough and the sample statistically homogeneous 
so that  results do not depend upon just what portion 
of the surface of the sample the beam strikes. We 
neglect beam spreading effects introduced by the 
diffraction at various depths. 

We first derive a simple but general expression for 
the reflected intensity which exhibits directly the 
salient features of the problem. We are able to 
separate the expression into two terms: a term which 
gives rise to the usual bulk infinite solid absorption 
factor and an additional term which gives the correc- 
tion to this term. After discussing some general 
features of the corrective term, we examine this term 
for a model which has validity in the limiting case of 
small porosity. 

F o r m a l  s o l u t i o n  

We consider the case of a porous solid with an im- 
pinging beam whose area is wide enough so that  its 
average intensity is equal to the statistical average 
of the intensity of an infinitesimally narrow beam. 
In this way we replace statistical averaging by an 
average over the area of the surface hit by the beam. 

Before going into the detailed formulation, it is 
of value to discuss the problem in terms of a naive 
model which leads one to expect that  an infinite 
powder might act like an infinite homogeneous solid. 
For a homogeneous solid, the intensity of the beam is 
I 0 e x p ( - # L ) ,  at a depth L s i n 0 ,  where L is the 
distance measured along the ray from the surface 
to the point of reflection and 0 is the angle of incidence 
- the angle of reflection. If # is the linear absorption 
coefficient for the solid, the contribution to the 
intensity of the emerging beam per increment of path 
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length dL is proportional to exp (-2/~L) where the 
paths in and out are of equal length. Integrating over 
the total  path from zero to infinity we find that  the 
total  intensity I is proportional to 1/(2#). (If we had 
considered transmission through a solid of thickness 
D sin 0, the t ransmit ted intensity would have been 
proportional to exp (- /~D).)  

If one now calls the absorbing path length La 
as opposed to the geometrical path length L, the 
absorption factor, between the point of incidence at  
the surface and the point of reflection, is exp (-/~L~). 
The intensi ty is proportional to the incremental 
length in the material  dLa. Under the assumption that 
the absorption path getting out is also L~, the integral 
of the expression exp (-2/aLa)dLa from zero to 
infinity yields the total  intensity which again is 
proportional to 1/(2#). In this calculation the voids 
have contributed neither to the absorption nor to 
the reflected intensity. Therefore, the powder has 
been t reated as a homogeneous solid and has ob- 
viously yielded the same result as for this case. 
Actually the only essential assumption necessary for 
this result is tha t  the absorbing paths in and out 
are equal. While this assumption is true for a solid 
and on the average for a powder, it is not identically 
true for individual paths except for normal incidence. 
For normal incidence the argument given is rigorous 

Fig. 1. A schematic representation of La and La', the absorbing 
paths in and out, respectively, for a given path length L. 
X 0 and X o' are the points of intersection with the surface 
of the incoming and outgoing rays respectively, and X 
is the geometric point of reflection. 

and the result will prove to be a special case of our 
more general t reatment .  In general it  is the difference 
in the absorbing paths in and out which gives rise 
to the correction over the infinite solid contribution 
and also to the difficulties in formulating the problem 
in general. 

We denote the absorbing path lengths in and out 
by L~ and L~ respectively and the coordinates of the 
point of reflection L and X where L is the geometric 
path length as before and X is a coordinate in the plane 
of incidence, parallel to the surface (Fig. 1). I t  is 
apparent tha t  at any given point L, X (in a given 
plane of incidence), the geometry of particle distribu- 
tion determines the functions La(L, X) and L~(L, X). 
I t  might be noted tha t  a beam reflected from L, X 
is incident at the surface at point X o = X - L  cos 0. 
Thus, for a beam incident at some point X0, the 
reflected intensity will be given by an integral over 
all L with X specified by Xo+L cos 0. The total  
intensity of the beam is obtained by integrating 
over all X0 within the incident beam width. As 
previously stated, we assume the beam to be wide 
enough to give a good statistical average. For con- 
venience the final integrations will be performed over 
the variables L and X rather than L and X0. (The 
Jacobian of the transformation is unity.) Let 
P(L, X)dLdX be the contribution to intensity of the 
reflected beam associated with the volume element 
dLdX, and associated with absorbing path  lengths 
La(L, X) and L[,(L, X). P(L, X) will be zero for those 
cases where there is no particle at  (L, X) and other- 
wise equal to I0exp [ -# (L~+La) ] ,  where Io is the 
normalized intensity,  Thus, 

1 1¢¢1 xB+zc°s° P(L,X)dXdL (1) 
I - (XB -- XA) o ~'x~+L ¢os 0 

where the integration of X corresponds to the range 
of Xo within the beam, defined by the limits XA 
and XB. We have included a normalization factor 
1/(XB--XA), assuming unit  dimensions for the other 
dimension of the beam, and with the tacit  assumption 
that  averaging over this other dimension would not 
change the result because of the assumed statistical 
homogeneity of the sample. We may write 

P(L,X)=Ioexp[-#(L,~+La)]A(L,X) ,  (2) 

where A(L, X) is so defined tha t  it  is uni ty  when 
there is a particle at (L, X) and zero when there is 
no particle there. We now show tha t  it  is possible to 
give an explicit form for A (L, X). 

The quant i ty  (SLa/~L)xo represents the change in 
absorption length with geometric length, for a ray  
entering at a fixed point Xo. I t  has the desired property 
of being uni ty  if there is a particle at (L, X) and zero 
if there is not. Similarly (~L/~/SL)x,o has the same 
property, considering a fixed point X0 of emergence 
of the ray, where X0 = X + L  cos 0. But  

( ~La/~L)x0 = ( ~L,/~L)x + ( ~La/~X)( ~X/~L)x0, 
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with (~X/~L)x o = cos 0.* Similarly 

( ~La/OL)x,0 = ( ~La/OL)x 4- ( OL[J ~X)( OX/OL)x,0, 

with (~X/~L)x,o = - cos 0. We choose to define A (L, X) 
as the symmetric combination, 

A(L, X) - ½{[~(La+La)/cOL]x 
+cos O[~(L,~-La)/~X]L } . (3) 

With this choice, equation (1) becomes 

I :  11 + 12, (4) 
where 

I 1 - -  
lO fX.B+L cos 0 Io dL 

XB -- XA vXA+L cos 0 
, 

X l [ e x p  --[t(iaT.La) ] \ ~ ] x d X .  (5) 

I~ - I0 cos 0 dL 
XB -- XA *)XA+L cos 0 

(~(La - i4 )~  
× ½[exp -#(L~+L~)]  ~ i  ]zdX.  (6) 

Examining 11 we find that  

xo=x.-x  dX dL 
0 

' (~(L~+L4)) x 
x l e x p [ - I ~ ( L a + L a ) ] \  +C (7) 

where C represents a beam spreading correction term. 
In the Appendix we show that  this term is vanishingly 
small in the limit that  the beam is wide compared with 
the average penetration depth. The integral in equa- 
tion (7) may now be performed without making any 
assumptions or restrictions to particular models for 
the distribution of path lengths in and out yielding 
the result 

I1/Io=1/(2#) . (8) 

Since we see that  /1 is in itself just the intensity 
corresponding to an infinite, non-porous solid,/2 must 
contain any correction arising from the granularity. 
I t  might be pointed out that  this separation into 
11 and 12 is not a trivial separation, in that  it does 
not simply subtract off from the expression for the 
intensity the 1/(2#) factor for the infinite solid. 
Rather the nature of the separation was such as to 
produce the 11 term whose value could be determined 
independent of the distribution and correlations of 
the absorbing paths in and out plus an I~ term which 
we shall subsequently show does depend on the 
correlations and distribution of absorbing paths in 
and out. I t  is worth emphasizing again that  the 
formulation for I in terms of the infinite continuous 
solid and a correction is exact and makes no assump- 
tions or restrictions on the distribution of path lengths 
in and out. 

* We assume t h a t  all the  der ivat ives  of La and  L'a are 
piecewise cont inuous,  in accord wi th  the  propert ies  of 
( OLa/aL)xo. 
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Granu la r i ty  correct ion t e r m  

General discussion 
Before attempting to evaluate 12, it is of value to 

look at the various contributions in a qualitative way. 
We first note that  in general, the average (over X) 
values of (~La/~X)L and (~La/~X)L are zero, as we 
expect equal positive and negative contributions. 
The reason that  the integral of each of these terms 
is not zero is that  the absorption coefficient gives 
different weighting to the positive and negative 
fluctuations. If the paths in and out are completely 
uncorrelated throughout, we would still expect the 
two terms to be identical and hence to give zero 
difference. If the paths in and out were identical, 
as they would be for 0=90 ° , or for a solid with 
laminations parallel to the surface, 12 would then 
again be identically zero. De Wolff (1956) has already 
pointed out that  the granular correction vanishes at 
normal incidence. With horizontal laminations, the 
quantities (~La/OX)L and (~LS/~X)L will of course 
individually be identically zero; one may also expect 
that  for geometries consisting of flaky particles with 
planes roughly parallel to the surface, 12 will remain 
small for angles differing appreciably from 90 ° . 
Thus, to summarize this qualitative discussion, a non- 
zero value of 12 depends on having fluctuations in 
density in a direction parallel to the surface. Moreover 
it depends on the difference in the integral over the 
paths in and out of these density fluctuations. I t  is 
worth emphasizing the fact, implicit in the derivation 
of our equations for the intensity, that  the averages 
that  we are discussing are over all points L, X regardless 
of whether there is a reflecting particle at this point. 
This considerably simplifies any calculation, since one 
does not have to introduce conditional probabilities 
for certain events depending on whether a particle 
is there. Thus, for example, it puts voids and particles 
on an equal footing in that  there are changes in the 
path length in and out arising both when the end 
point (L, X) is in a void as well as when it is at a 
particle. This will become clear in the following 
example which will serve to give a quantitative 
estimate of the corrective term. 

To facilitate examining the correction term 12, 
we write it in the form 

12 = Io dLJ2(L,  O) (9) 
0 

where J 2  is given by 

COS 0 (.XB+L cos 0 

J2(L, O) = 2(X8 - XA) ~,~xa+s co~ o 

xexp[--/-t(ia-~-L4)][(~ia) {~ial ]dX  (10) 
L\--6ZIs- \ a X l s J  " 

I t  might be noted that the factor (XB--XA) -I enters 
into the definition of J2.  Since we are only interested 
in J 2  in the limit that  tt(XB--XA) is very large, then 
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(L,~ + L'a) 
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Fig. 2. The absorbing paths La and La" and their appropriate derivatives as a function of X for a cubic particle and a 
cylinder. Sections 1-4 give these parameters for the same angle of incidence and different geometric paths of reflection. 

we shall  regard as zero any  te rm which vanishes  in  
this  l imit .  I t  might  first  be noted tha t  J~, is zero 
when the absorbing paths  in and  out are completely 
uncorrelated.  From equat ion (10) we can write J~, 
(uncorrelated) 

3¢~. (uncorrelated) 

= {< xp(- La)>Ioxv(- Lo) Lo 2(XB--XA) 
- <exp (-  #L~)> I exp ( -  #L~)dL~} 

COS 0 

= 2~u(XB--XA){<exp ( - # L a ) >  exp (-~uLa) 

- < e x p  (- /xL~)> exp (-/~L~)} ']XB+z'c°s0 
XA.-{-.L cos 0 

~0  (tl) 

where in  the integral  over dLa we have replaced 
exp ( - # L ~ )  by  i ts  average value  and  exp ( - # L ~ )  
b y  i ts  average in the integral  over dLa, in  accord 
wi th  the lack of correlation between La and L a. 
I t  should be noted tha t  the separate  te rms in  equat ion 
(11) go to zero in  the sense def ined above. However,  
this  resul t  does not  obta in  in  general  when correla- 
t ions do exist  between La and La. The correlations 
of course depend expl ic i t ly  on the geometry. For a 
random collection of part ic les  or pores one would 
expect  t ha t  the pa ths  would be uncorrela ted except 

where the  pa ths  in  and  out are through the  same 
par t ic le  or a closely correlated group of particles. 
I t  is therefore useful to consider the correlation arising 
specifically when the  incoming and  the outgoing rays  
are associated wi th  the same particle.  For s implici ty,  
the part icles are t aken  to be cubes wi th  planes paral le l  
to the plane of the r ay  and  the surface of the powder. 
The results,  however, are not thought  to be sensit ive 
to the geometry.  In  Fig. 2, we plot the sum of the 
incoming and  outgoing absorbing paths  and the 
der ivat ive of their  differences as a funct ion of X. 

The only non-zero contr ibut ion to J 2  will  arise when 
for a given L, there exists a region in X where La 
and L~ are s imul taneously  passing through the particle.  
This corresponds to the region of correlation or 
overlap. I t  should be noted tha t  the  region of overlap 

V • q 

T 
w 

- 2 )  

Fig. 3. Region of 'overlap' or 'correlation' about a cubic 
particle. Contributions to absorption correction arise from 
shaded portions. Interior unshaded regions give no correction 
since the two absorbing paths are equal. The heavily 
shaded regions give mutually cancelling contributions 
leaving only the diagonally shaded regions as the overlap 
contribution. 
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is larger than the particle depth. :Fig. 3 depicts the 
region of overlap around such a particle. In Fig. 2 
we also give the absorbing paths for a circular cross- 
section which shows qualitatively similar results. 
One can also see the sign of the correction term from 
these figures, namely, the derivative term is negative 
where the L~+ L~ is smallest. Because of the negative 
sign in the exponent, the negative contribution is 
therefore larger and the correction is negative. The 
correction term has the same sign for a pore (for now 
the derivative term is negative when the absorbing 
path is smallest and positive when the absorbing path 
is largest). In the case that  there is more than one 
pore or particle, it is apparent that  as long as there 
are no special correlations between them, and they 
are not within regions of overlap, the contributions 
t o / 2  are additive. 

Estimate for dilutely porous solid 
We have therefore considered the corrections for 

a solid with small well-separated pores, such that  
( 1 - a ) ,  the fraction of space filled by pores, is small. 
Our method of computing the contribution from each 
pore requires that  we do a rather extensive set of 
integrations for each angular region of interest. 
As the results in the region of normal incidence are 
of particular interest, we first derive the expression 
for Is valid in the range tan 0 _ 2. For a cubic pore 
of dimension w at 

I0 cos 0 
I ° (tan 0 _> 2) = -- 

(XB--XA)2#2 
x [ C - ( 1 - e x p  [ - S ] ) ( 2 - C - 2  exp [ -C] )  
-½  exp [ - S ]  sinh 2C] (12) 

where 
S=~uwsecO and C= /~wcsc0 .  

In this calculation, I ° is the intensity per pore taken 
to be located with top at zero depth. (In the following, 
we will denote the position of the pore by the location 
of its top surface.) We now examine the effect of 
having a distribution of pores in depth. If the pore 
under consideration were the only pore in the solid, 
its effect at depth sin 0 would be reduced by the 
absorption factor exp (-2/~l). The effect of having 
intervening pores between the surface of the solid 
and position of the pore is to reduce the total ab- 
sorbing path by the length of pores intercepted. 
We denote the absorbing paths between the surface 
and the depth of the pore by la and la, so that  the 
absorption factor entering because of the finite depth 
of the pore is exp (-2#(l~+l~)). In principle this 
factor, which is a function of the variables L, X, 
should be introduced into the integration over the 
pore geometry to obtain the contribution to I9. of 
the particular pore. However, with the assumption 
that  there is no correlation between the position of 
the pores, the fluctuations in values of 1 a and la 
from their average values are uncorrelated with the 

position of the pore, and the average effect of a pore 
at depth l sin 0 is just the result for a pore at zero 
depth multiplied by 

(exp -/z(la + la)>Av --~ exp (-- 2/aal) 
× [1 +½,u((2al--la--la)2)Av]. 

The average number of pores per unit volume is 
( 1 -  a)/w s, and the total effect is obtained by inte- 
grating over depth and the beam with ( X B - X A )  
for unit transverse dimension. The resultant expression 
is 

1 ( 1 -  ~) ( X , - - X A ) I  ° 
2# ~ w 2 csc 0 (13) 

The fluctuation term has been neglected since it is 
a factor of order #w smaller than the term retained. 
Where #w is not small compared with unity a different 
treatment would have to be used. 

One must further add the contribution to the 
absorption correction arising from pores which are 
intercepted by the surface and do not appear as full 
pores. The number of these pores per unit length is 
(1 -a ) /w.  If one assumes that  the average correction 
per pore of these is bI °, then the total absorption 
correction 12 is given by 

(1 -- a)(XB--XA) 
I2 = 2#aW 2 CSC 0 [1 + 2ba#w csc 0]I °. (14) 

We have not computed the magnitude of b as a 
function of angle and #w for our model but instead 
have taken ba to be one-half. For the region tan0 >_ 2, 
and using equations (12) and (14) we obtain for Is 

I o ( 1  - a )  
Is (tan 0 >_ 2) -- 

4,uSC oc 
x [ C - ( 1 - e x p  [ - S ] ) ( 2 - C - 2  exp [ -C] )  
-½  exp [ - S ]  sinh 2C][1 +C] (15) 

where ~ is the ratio of the apparent density to the 
bulk density. To obtain a semi-quantitative estimate 
of Ie for the case C and S much less than unity, 
we expand exponentials in equation (15) to obtain 

- = 4 #  a 3 " 

We are interested in seeing whether the correction 
goes to zero smoothly as the angle of incidence 
approaches 90 °. For this case, S >> /~w and we return 
to equation (15) to find 

I s  I 0  (1 - a) cos 0.  (17) 
4 #  

Thus, Is does go smoothly to zero within a small 
angular range as 0 approaches 90 ° and there is no 
abrupt discontinuity in the correction factor, in 
agreement with intuition and the fluorescence measure- 
ments of de Wolff (1956). I t  should be remembered 
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tha t  the present calculation is for a dilutely porous 
solid such tha t  the spacing between pores is larger 
than the overlap or correlation distance. This distance 
is angular dependent (Fig. 3) and in the region of 90 ° 
would be infinite if i t  were not for the absorption 
which effectively limits the correlation distance to l/re. 
Thus, the dilution requirement is likely to be violated 
for practical porosities.* 

We now give an expression for I2 valid in the range 
of smaller angles (0 _< 45 °) in order to obtain the 
angular dependence of I2 throughout. Without  going 
into any of the steps (they closely parallel those 
made in obtaining equation (15)), we find 

I2(0 < 45 °) = I0(1 - c~) [ 1 
- 4#Ca  1 - ~ ( 1 -  e x p [ - S ] )  

1 1 -- ½ exp [ - 26' + S] + ~-~ exp [ - 26'] sinh S (1 + C'). 

(18) 

Expanding functions for S and C much less than 
unity,  we find 

Io(1 - a)  
12(0 <_ 45 °) - -  - - - -  S ( 1 - t a n  0/3). (19) 

4/xa 

In  the region close to grazing incidence, the bulk 
contribution to equation (19) vanishes and one is left 
with the surface contribution 

z2(o ~ o) ~ Zo(~- ~,_______~) (b:,w~ (2o) 
= 2~ \ 2 / "  

In Fig. 4, we have taken bc~=½, on the assumption 
that the surface pores contribute half the correction 

-0"05 

-0"10 

/2 a 
]1(1 -a) 

-0 "15  

-0"20 

1 
~w = 0"01 / {  

// 

w=0"10 . . . . . . . .  - ~ 

I 1 ! 1 I 
0 110 20 30 4'0 50 610 70 80 90 

Fig. 4. (I2/I1)a/(1--a) versus 0 for a range of values of #w= 
0.01--0.5 corresponding to the range of effective particle 
size from fine to coarse, respectively. The dashed line was 
obtained by interpolation. 

* P. M. de Wolff has commented (Private communication) 
that the way in which the correction term vanishes near 90 ° 
is one of the most important problems in this field. 

of full pores. In the limit of grazing incidence, we 
might expect tha t  the surface pores are as effective 
as the bulk pores and b is close to unity.  In Fig. 4 
we give the plot of relative correction I2/I1 versus 0 
computed according to the above approximation. 
The central region sho~n as a dashed line has been 
obtained by interpolation. I t  .may be noted tha t  for 
the two smaller absorptions, for which the calculations 
are more reliable, the correction term is small and 
fairly independent of angle except quite close to 
0 = 90 °. As the angle of incidence goes to zero, surface 
effects become dominant and the apparent  decrease 
in the correction term is not to be taken seriously 
because of the crude approximations made in estimat- 
ing this term. 

C o n c l u s i o n s  

The present exact formulation of the granular i ty  
correction has made it  possible to gain physical 
insight into the sources of this correction as well as 
to obtain a quanti tat ive estimate of the correction. 
We find tha t  the correlations between a ray 's  incoming 
and outgoing absorption lengths determine the mag- 
nitude of the correction term. In the special case 
where the correlated incoming and outgoing absorbing 
paths are identical, the correction vanishes. A zero 
correction also arises when there are no correlations; 
however, correlations of a more general nature will 
result in a non-zero correction. Correlations tha t  do 
arise come almost entirely from particles or pores 
that are at or near the geometric point of reflection. 
We have estimated the magnitude of the correction 
term for a single pore utilizing cubic geometry for 
the pore shape. We have shown that this result can 
be used to obtain the correction term in a dilutely 
porous material, provided that the pores are more 
widely separated than the correlation or overlap 
distances. The neglect of extinction effects also 
replies the assumption that the crystallites are 
irandomly oriented and small compared with any 
characteristic dimension involved in the description 
of porosity. Although the quantitative estimate of 
the correction term is given here for only a simple 
geometry, we think the present exact formulation 
will serve as a good starting point when more details 
of the geometry and statistics of particle distributions 
are introduced. Our present result is tha t  the relative 
correction is o~ the order (1 - a)t tw/a.  As the porosity 
increases, ( l - a )  would be replaced by a and the 
average pore size w by the average particle size since 
the role of pore and particle become interchanged 
as the average particle size becomes smaller than  the 
average pore size. We would be rather surprised if 
more exact t reatments  should yield results significantly 
different from our present estimate. 

I t  is difficult to make quant i ta t ive comparisons 
of the present theory with experiment. While the 
formulation of the problem is fairly exact, the quan- 
t i ta t ive estimate of the correction term is only valid 
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for small porosity and small values of #w. In the 
measurements of Wilchinsky (1951), a point at  small 
#w was normalized to his theoretical value and thus 
quanti tat ive comparison is not possible. De Wolff 
(1956) used fluorescence to check theory. This tech- 
nique is directly applicable to present theory provided 
tha t  the absorption coefficients for the incident and 
fluorescent X-rays are equal, as they  were in de Wolff's 
experiment. I t  also has the advantage tha t  extinction 
and preferred orientation corrections are absent. 
De Wolff's fine particle data are closest to fitting 
the assumptions of our theory, and show a slowly 
varying correction at  high angles, curving over 
towards zero for normal incidence in qualitative 
accord with theory. In  the region of low angles the 
de Wolff data  indicate an increasing porosity correc- 
tion with decreasing angle whereas our calculation 
yields a decreasing correction with decreasing angle. 
In this region, our quanti tat ive estimate is certainly 
less valid since detailed surface roughness corrections 
have not been made, while their importance is en- 
hanced at  low angles. I t  might be noted, however, 
tha t  de Wolff's solid sample also shows some intensity 
decrease in the low-angle region, suggesting tha t  at 
least par t  of the effect in this region for the particle 
samples also may not be due to porosity. Bat terman,  
Chipman & DeMarco (1961) report tha t  the fluores- 
cence intensi ty from their porous and solid samples 
agreed within their  experimental error (less than 2%). 
Since the bulk porosities of the Fe and Cu briquettes 
were 0"39 and 0.55, respectively (Chipman and 
DelVfarco, private communications), we would expect 
the corrections to be about 5% for Fe and 10% for Cu. 
Although we have extended the theory to larger 
porosities than those for which the quanti tat ive result 
is strictly applicable, nevertheless, we do believe a 
discrepancy exists. I t  is suggested tha t  their pressing 
technique may have reduced the porosity close to 
the surface. As the diffracted intensity in their 
measurements arose mostly in the first 25 microns 
of the surface, the porosity correction could be 
considerably reduced. I t  becomes apparent tha t  there 
is further need for a series of carefully controlled 
experiments on effect of porosity on intensity. 

Io 
11 = 

2(XB--XA) 

f X'B I (X-XA) secO d n e x p { - / A ~ [ n ,  X]} ( ~ )  X .dXo 
Io + 

2 ( X B - - X A )  

x d L e x p { - ~ [ L , X ] }  O ~  . / 
XB *)(X--XB) see 0 X 

,, 

We can perform the integration over L, obtaining 

Io {f XB dX 
I1 = 2 #  (XB- -  XA) x~ 

? } + dX exp [ - #~o [(X - XB) see O, X] 
X.B 

f - d X e x p { [ - - # ~ [ ( X - - X A )  secO, X]}.  
XA 

Finally, 

where 

I1 1 
- - = ~ + C ,  
Io 2# 

1 l ~ dX' 
C = 2# (XB--XA) o 

x {exp ( - - # ~ [ X '  see 0, X'+XB]) 

- exp ( - / ~ [ X '  sec O, X '+XA])} .  

C will not be identically zero in general. However 
its expectation value will be zero if XB--Xa is large 
enough tha t  there is no correlation between ~Lf(L, X) 
and ~ [ L ,  X + X B - X a ] .  This is usually the case, 
unless there is long range order in the granule 
geometry. For the complete correlation tha t  exists 
for a non-porous solid, C will obviously be identically 
zero. Even if correlation exists, C will at  most be 
of order 

1 1 
2[A ~X[~(XB--XA) see 0 ' 
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A P P E N D I X  

Reversing the order of integration in equation (5) 
and letting La + La - ~ [ L ,  X] leads to 

where c¢ is the ratio of average density to tha t  of the 
non-porous solid. Therefore for wide enough beams, 
C can always be neglected. 
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